Product Description
Recombinant Human Malonyl-CoA decarboxylase, mitochondrial (MLYCD) is available at Gentaur for Next week Delivery.
Gene Name: O95822
Alternative Names :
Expression Region : 40-493aa
AA Sequence : MDELLRRAVPPTPAYELREKTPAPAEGQCADFVSFYGGLAETAQRAELLGRLARGFGVDHGQVAEQSAGVLHLRQQQREAAVLLQAEDRLRYALVPRYRGLFHHISKLDGGVRFLVQLRADLLEAQALKLVEGPDVREMNGVLKGMLSEWFSSGFLNLERVTWHSPCEVLQKISEAEAVHPVKNWMDMKRRVGPYRRCYFFSHCSTPGEPLVVLHVALTGDISSNIQAIVKEHPPSETEEKNKITAAIFYSISLTQQGLQGVELGTFLIKRVVKELQREFPHLGVFSSLSPIPGFTKWLLGLLNSQTKEHGRNELFTDSECKEISEITGGPINETLKLLLSSSEWVQSEKLVRALQTPLMRLCAWYLYGEKHRGYALNPVANFHLQNGAVLWRINWMADVSLRGITGSCGLMANYRYFLEETGPNSTSYLGSKIIKASEQVLSLVAQFQKNSKL
Sequence Info : Full Length of Mature Protein
Tag Info : N-terminal 10xHis-tagged and C-terminal Myc-tagged
Theoretical MW : 55.9 kDa
Storage Buffer : Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Endotoxin Level : Not tested-
Biological Activity : Not tested
Storage : Short term: -20°C; Long term: -80°C. Minimize freeze and thaw cycles.
Research Area : Others
Restriction : For Research Use Only. Not for use in diagnostic procedures, drug use, or for administration to humans or animals.
Relevance : Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in muscle independent of alterations in insulin signaling. May play a role in controlling the extent of ischemic injury by promoting glucose oxidation.
Function : Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in muscle independent of alterations in insulin signaling. May play a role in controlling the extent of ischemic injury by promoting glucose oxidation.
Involvement in disease : Malonyl-CoA decarboxylase deficiency (MLYCD deficiency)
Subcellular location : Cytoplasm, Mitochondrion matrix, Peroxisome, Peroxisome matrix
Protein Families :
Tissue Specificity : Expressed in fibroblasts and hepatoblastoma cells (at protein level). Expressed strongly in heart, liver, skeletal muscle, kidney and pancreas. Expressed in myotubes. Expressed weakly in brain, placenta, spleen, thymus, testis, ovary and small intestine.
Paythway : AMPKSignaling
Uniprot ID : O95822